Print
Email Link
Feedback
Report
Share
dreamstime_xxl_14699315
shadow
(click for larger version)
02/21/2017 - J. William Langston was working as the head of neurology in July of 1982 at the Santa Clara Valley Medical Center, in California, where a 42-year-old heroin addict was brought from the county jail after suddenly becoming unable to move or speak

Admitted for possible catatonic schizophrenia, Langston found that the patient appeared to be cognitive but unable to control his motor skills. The symptoms, he said, resembled those typically displayed by older patients during the advanced stages of Parkinson's disease. Stiff, rigid and in a frozen state, five more zombie-like addicts began arriving at San Francisco Bay Area emergency rooms.

"A group of heroin addicts in the 1980s all developed full-blown Parkinson's disease overnight," Langston said, recounting the episode that ultimately led to a scientific breakthrough in the research of Parkinson's disease and linked its risk to a number of herbicides. "It looked identical to advanced Parkinson's. It was called 'the walking dead' on the street. Nobody had ever seen anything like it. Eventually, we found out what was going on."

The connection, so to speak, was a clandestine chemist who had cooked a bad batch of MPPP, a painkiller similar to Demerol first created in 1947 as an alternative to morphine. In 1976, the formula resurfaced when a 23-year-old chemistry student used the recipe to create an uncontrolled designer drug to be used as a synthetic heroin. The student, by no small coincidence, developed the same Parkinsonian symptoms as the addicts seen by Langston in 1982.

Working with law enforcement, Langston was able to find the source of the drug, analyze its chemical compound and identify an unintentional impurity called MPTP, which is created during the manufacture of MPPP when its temperature gets too high.

"They not only got high, but they became stiff and rigid," Langston said. "The drug they injected isn't toxic at all. But (MPTP) is a compound that can get in the brain, and once it gets there, it's converted to MPP+, and that's the toxin. It gets into the brain and wipes it out like a Nike missile. It's unbelievable how incredibly toxic it is."

Because Parkinson's disease isn't known to naturally occur in any species other than humans, researchers had no way to replicate the disease in animals prior to Langston's discovery. Within months of the finding, they were able to induce Parkinsonian symptoms in monkeys by using MPTP.

In 1988, Langston founded the Parkinson's Institute and Clinical Center in Sunnyvale, California, where he now serves as Chief Scientific Officer. The non-profit, independent institute provides basic and clinical research, clinical trials and patient care for Parkinson's disease and related neurological movement disorders.

...continued on page 2
Pages 1 2 3 4 5 6 7 8 9 10 11 12 13


Tags: LONGFORM

Comments ()